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INTRODUCTION

Bottom-up (i.e. resource availability) and top-down
(i.e. food chain length) controls act in concert to affect
biomass accumulation across trophic levels as well as
in biogeochemical cycles (Chase et al. 2000, Hille-
brand 2002, Hughes et al. 2004, Burkepile & Hay

2006). In seagrass systems, for example, elevated
resource levels and changes in top predator abun-
dance may increase plant biomass and the delivery of
plant-derived organic matter (OM) to the sediments
(Canuel et al. 2007, Spivak et al. 2007). The quality and
rate of OM deposition, in turn, can have large effects
on OM decomposition and carbon burial in sediments
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(Hansen & Blackburn 1992, Cebrian & Duarte 2001).
Consequently, resource availability and community
composition may synergistically alter sediment bio-
geochemistry and ecosystem functioning. Here, we
experimentally tested how food web structure and
nutrient enrichment alter sediment organic matter
(SOM) abundance and quality in a natural eelgrass
Zostera marina ecosystem. A goal of this field experi-
ment was to determine whether linkages among food
web composition, resource levels and SOM identified
in previous mesocosm experiments (Canuel et al. 2007,
Spivak et al. 2007) can be observed in the more com-
plex natural environment.

In vegetated coastal habitats, photosynthetic carbon
is channeled through grazers, exported to neighboring
ecosystems, or buried in the sediments (Pergent et al.
1994, Duarte & Cebrian 1996, Cebrian & Duarte 2001,
Duarte et al. 2005). Small invertebrate grazers mainly
consume nutrient-rich algae and epiphytes, leaving
senesced seagrass blades and rhizomes as the main
source of buried OM (Pergent et al. 1994, Duarte &
Cebrian 1996, Cebrian 1999, Cebrian & Duarte 2001).
Eutrophication may alter the proportion of algal and
epiphytic carbon that is exported or buried by stimulat-
ing higher rates of production, changing the composi-
tion of primary producer assemblages and/or altering
the effectiveness of grazers in cropping production
(Cloern 2001, Duarte 2002). Deposition of higher
quality OM derived from labile algae can stimulate
bacterial decomposition (Hansen & Blackburn 1992,
Boschker & Cappenberg 1998) and, hence, the deple-
tion of oxygen and lower redox conditions in the sedi-
ments. As anoxic conditions develop, sulfate reduction
may become a dominant pathway for OM decomposi-
tion. Thus, eutrophication may dually effect seagrass
by increasing algal-mediated shading (Cloern 2001,
Duarte 2002, Orth et al. 2006) and sediment dissolved
sulfide concentrations (Hemminga 1998, Calleja et al.
2007, Perez et al. 2007).

The symptoms of eutrophication may be diminished
or amplified by food web composition and structure
(Carpenter et al. 1985, Pace et al. 1999). In a 2-level
food web, strong grazing controls can reduce the neg-
ative effects of nutrient loading by channeling algal
production into animal biomass (Hughes et al. 2004,
Burkepile & Hay 2006, Heck & Valentine 2007). Fur-
ther, grazer species identity and feeding preferences
can strongly influence the composition of the primary
producer community (Duffy & Hay 2000, Duffy 2003).
In a 3-level food web, predators can exaggerate the
effects of nutrient enrichment by inhibiting grazers
and releasing algae and epiphytes from grazing pres-
sures via a trophic cascade (Oksanen et al. 1981, Car-
penter et al. 1985, Forrester et al. 1999, Pace et al.
1999). Therefore, the effects of nutrient enrichment in

seagrass beds may be influenced by trophic structure
and community composition.

Despite potentially strong bottom-up and top-down
effects on OM deposition and the importance of SOM
quality to sediment biogeochemistry (Duffy et al. 2003,
Canuel et al. 2007, Spivak et al. 2007), the synergistic
effects of nutrient enrichment and community compo-
sition on SOM are poorly understood. This is probably
due to the difficulty in identifying and manipulating
links between above-ground ecology and sediment
processes under realistic conditions. Lipid biomarkers
are a functional proxy for linking OM to its potential
sources (Lechevalier & Lechevalier 1988, Harvey 1994,
Canuel et al. 1995, Canuel & Martens 1996), since
these compounds are reliably produced by specific
groups of organisms (Napolitano 1998, Dalsgaard et al.
2003). Diagnostic biomarkers often have site-specific
methyl groups, double bonds or cyclic side chains use-
ful for tracing sources of OM (Napolitano 1998, Dals-
gaard et al. 2003). Some groups of bacteria, for exam-
ple, synthesize iso- and anteiso-branched fatty acids
while microalgae contain highly unsaturated long
chain fatty acids (Harwood & Russell 1984, Taylor &
Parkes 1985, Volkman et al. 1998). In addition, lipid
biomarkers are sufficiently resistant to degradation to
be preserved in sediments, allowing for the identifica-
tion of OM that has been deposited on ecological and
historical timescales (Meyers 1997, Zimmerman &
Canuel 2002). Here, we used fatty acids (FAs), a class
of lipid biomarkers with high source fidelity and a
range of chemical reactivity (Canuel et al. 1995,
Canuel & Martens 1996), to experimentally quantify
links between the aboveground community and SOM
content and composition.

To assess the effects of changing resource availabil-
ity and food web structure on carbon fate and storage
in a natural seagrass bed, we conducted an experimen-
tal manipulation of bottom-up forcing (water column
nutrient addition) and food web structure (grazer and
predator presence) and measured their interacting
effects on SOM composition. Specifically, we built on
previous mesocosm studies examining the effects of
community diversity (Canuel et al. 2007) and light
levels (Spivak et al. 2007) on SOM composition to test
several hypotheses in this field experiment. First, we
predicted that nutrient enrichment would increase
algal biomass and the deposition of algal-derived OM
to the sediments. The increased lability of SOM would,
in turn, stimulate sediment heterotrophic bacterial
activity and the accumulation of bacterial FAs. Second,
algae would indirectly decrease Zostera marina abun-
dance by increasing competition for light and nutri-
ents. The presence of a grazer community would
reduce algal accumulation and the abundance of their
characteristic FAs in the sediment and would increase
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Z. marina. Finally, the presence of predators would
result in a trophic cascade in which grazer abundance
was reduced and algal biomass and OM contributions
to the sediments were increased.

MATERIALS AND METHODS

Experimental design. This field experiment exam-
ined the main and interactive effects of food web
structure (i.e. grazer and predator presence) and water
column nutrient addition on SOM content and compo-
sition in a natural eelgrass bed. Grazer treatments had
2 levels, either zero grazers or an assemblage of 3 spe-
cies (an amphipod, Gammarus mucronatus, and 2
isopods, Erichsonella attenuata and Idotea balthica).
Predator presence was manipulated by exposing par-
allel sets of these 2 grazer treatments to a generalist
predator, the blue crab Callinectes sapidus. There
were 8 treatments, each replicated 5 times for a total of
40 experimental field cages. Nutrient addition was
controlled through fertilizer additions (Osmocote™) to
half of the cages. To control for caging effects, we
established no-cage control plots that only received
nutrient treatments, since it was impractical to main-
tain grazer and predator treatments without cages.
There were 2 no-cage treatments (with nutrients ver-
sus without nutrients), each replicated 5 times for a
total of 10 no-cage control plots.

Treatments were applied to caged enclosures (51 ×
51 × 81 cm) and no-cage control plots (51 × 51 cm) situ-
ated in a Zostera marina bed adjacent to Goodwin
Islands, an archipelago in the York River estuary, Vir-
ginia, USA. (see Douglass et al. 2007 for a detailed
description of cage construction). The cages were cov-
ered with 250 µm mesh (Nytex) that permitted water
circulation and passage of propagules, but prevented
predator and grazer immigration and emigration.
Before experimental treatments were applied, caged
enclosures and no-cage control plots were defaunated
with a liquid insecticide (SevinTM). Douglass et al.
(2007) described cage design and the defaunation pro-
cess in greater detail. Grazer, predator and nutrient
treatments were applied to the caged enclosures 4 d
after defaunation. Grazer treatments consisted of an
assemblage of 3 species, including an amphipod crus-
tacean, Gammarus mucronatus (40 ind.), and 2
isopods, Idotea balthica (40 ind.) and Erichsonella
attenuata (20 ind.). Predator treatments were stocked
with 2 blue crabs Callinectes sapidus, with carapace
widths of 20 to 40 mm. Grazers and blue crabs were
collected from the surrounding Z. marina bed immedi-
ately before addition to the cages and were stocked in
proportions and abundances that reflected those in the
field at the time of the experiment. Nutrient treatments

were applied by suspending 2 perforated PVC tubes
containing slow release fertilizer (Osmocote™; N:P =
3:1) above the sediments. We added 200 g of Osmo-
cote™ during the first week and 400 g thereafter to
achieve the desired and sustained level of enrichment.
Contamination between fertilized and unfertilized
treatments was prevented by spacing the cages 3 m
apart. We deemed this distance to be sufficient to pre-
vent cross-treatment contamination in a preliminary
experiment. The experiment ran for 28 d during sum-
mer 2005. This time period was chosen to minimize the
risk of invasion by non-target grazer species and to
permit development of the animal and plant commu-
nity and of surface sediment characteristics. During
this time, temperature and salinity ranged from 23 to
27°C and from 15 to 19, respectively (K. A. Moore
unpubl. data). Biomasses of aboveground primary pro-
ducers and animals in this experiment are reported by
Douglass et al. (2007). Here, we focus on SOM compo-
sition.

Nutrient enrichment. Weekly, and immediately
before the fertilizer was refreshed, 25 ml of water were
collected from 3 replicates of each treatment and fil-
tered through a precombusted (450°C) glass fiber fil-
ter. Water samples were initially chilled and later
frozen (–20°C) until they were analyzed for NH4

+,
(NO2

– + NO3
–) and PO4

–3 concentrations by standard
methods with a Lachat auto-analyzer (Smith & Bogren
2001, Knepel & Bogren 2002, Liao 2002).

Light. To determine light levels we measured photo-
synthetically active radiation (PAR) in 10 randomly
chosen cages, 14 d after they had been installed. The
PAR measurements taken at 14 d represent realistic
conditions within the cages since they were subjected
to fouling. PAR measurements were taken with a
spherical light meter (Li-Cor) in the eelgrass canopy
both inside and outside of the cages. See Douglass et
al. (2007) for more details.

Primary producers. Eelgrass and epiphyte biomass
were determined at the end of the experiment. Eel-
grass biomass was estimated from a grab sample (20 ×
20 cm) taken from the center of the cage. The samples
were frozen at –20°C until analysis (see Douglass et al.
2007 for details). Epiphyte biomass was estimated by
scraping the fouling material from 5 eelgrass blades
from each treatment onto a GFF filter (Whatman™)
and measuring blade surface area with a 3100 area
meter (Li-Cor). The filters were extracted in an acetone
solution for 24 h before the extract was filtered and the
absorbance measured using a UV-1601 spectropho-
tometer (Shimadzu). Epiphytic chlorophyll a (chl a)
mass was calculated and normalized to blade area (see
Douglass et al. 2007 for details). In addition, 3 sediment
cores (2.1 cm diameter) were collected to determine
benthic chl a concentration, a measure of microalgal
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biomass. Subsamples from each core (upper 1 cm)
were combined in a scintillation vial to form a compos-
ite sample that was frozen at –20°C until analysis. The
samples were analyzed within 6 wk of collection
(Neubauer et al. 2000).

Bulk sediment organic matter (SOM). At the end of
the experiment, 3 sediment cores of 2.6 cm diameter
each were collected from every caged enclosure and
no-cage control plot and analyzed for total organic car-
bon (TOC), total nitrogen (TN), and FA content. The
upper 1 cm from each core was removed; subsamples
from each core were combined into a composite sam-
ple in a precombusted (450°C) jar. Samples were
stored at –80°C. TOC and TN were analyzed by stan-
dard methods using a flash elemental analyzer (Fisons
Model EA 1112) after removing inorganic carbon
(Hedges & Stern 1984); acetanilide was used as the
standard.

Fatty acid analyses. Fatty acids were analyzed using
previously reported methods (Bligh & Dyer 1959, Mac-
naughton et al. 1997). Briefly, sediment samples were
extracted with methanol:chloroform:K2HPO4 (50 mM)
buffer (2:1:0.8, v:v:v) using an accelerated solvent
extraction system (Dionex ASE 200). Following extrac-
tion, the samples were partitioned and the organic
phase removed. Anhydrous Na2SO4 was added to the
organic phase to remove water overnight. The samples
were concentrated to 1 ml (Zymark Turbo Vap 500)
and then saponified (Arzayus & Canuel 2005). Follow-
ing saponification, the residue was extracted under
basic (saponified-neutral) and acidic pH (saponified-
acid). The saponified acid fraction was methylated
using BF3-CH3OH and purified using silica gel chro-
matography. Before analysis by gas chromatography
(GC), samples were evaporated to dryness under N2

and a small volume of hexane was added. The FAs, as
methyl esters, were analyzed by gas chromatography
(Canuel & Martens 1993, Zimmerman & Canuel 2001).
Peaks were quantified relative to an internal standard,
methyl heneicosanoate, added just prior to GC analy-
sis. Peak identities were verified using reference stan-
dards and by combined gas chromatography–mass
spectrometry using a Hewlett-Packard 6890 GC inter-
faced with a mass selective detector operated in elec-
tron impact mode. FAs are designated as A:BωC,
where A is the total number of carbon atoms, B is the
number of the double bonds, and C is the position of
the first double bond from the aliphatic ‘ω’ end of the
molecule. The prefixes ‘i’ and ‘a’ refer to iso- and
anteiso-methyl branched FAs (see Canuel et al. 1995
and references therein).

Statistical analyses. To determine the effect of cage
presence on primary producer biomass and SOM con-
tent and composition, we conducted 1-way ANOVA
using SAS v.9.1 for Microsoft Windows. Only the no-

cage controls and caged treatments with grazers and
predators were included in the analyses since those
treatments only varied in the presence of cages.

The whole experiment was analyzed as a fully facto-
rial 3-way ANOVA, with grazer treatment (df = 1),
predator treatment (df = 1) and nutrient addition (df =
1) as fixed variables. Analyses of FAs were conducted
on concentration data normalized to total FA abun-
dance (% total FAs). Data were transformed by log
or arcsine square root functions as necessary to main-
tain homogeneity of variance as determined by the
Cochran’s C-test. From the ANOVAs we calculated the
magnitude of main and interactive effects (ω2, percent-
age of variance explained). Due to failure of caged
enclosures (e.g. tears or holes in the Nytex mesh) 7
replicates were removed from the final statistical
analyses. No-cage control plots were also excluded
from the final ANOVA since their inclusion would
have resulted in an unbalanced statistical design.
Thus, 33 replicates were used in statistical analyses:
caged control treatments had 4 replicates in each
nutrient condition, grazer treatments had 4 replicates
with nutrients and 5 without, crab treatments had 3
replicates with nutrients and 4 without, and combined
grazer and predator treatments had 5 replicates with
nutrients and 4 without. Results presented use the type
III sum of squares (SS) from the ANOVA models.

To interpret the bulk SOM and FA data, we per-
formed multiple regression and principal components
analyses (PCA; Minitab 14 statistical software). Multi-
ple regression tests modeled %TOC, %TN and the FA
groups as functions of Zostera marina biomass, epi-
phytic chl a and benthic chl a. The partial r2 was calcu-
lated by dividing the type III SS for each response vari-
able by the total SS. In the PCA, we included Z. marina
biomass, epiphytic chl a, benthic chl a, %TOC, %TN
and FA groups. PCA yielded loadings and scores,
which described correlations between dominant
principal components and response variables (load-
ings) and observations (scores). PCA loadings were
regressed against Z. marina biomass, epiphytic chl a
and benthic chl a to help interpret the nondimensional
results.

RESULTS

Cage effects

Field cages reduced photosynthetically active radia-
tion by 66% relative to ambient, to an average of
262 µE s–1 m–2, which is within the range of saturating
irradiance for Zostera marina. One-way ANOVAs,
comparing the no-cage controls to the caged treat-
ments with grazers and predators, showed that cages
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reduced Z. marina biomass (p < 0.001), epiphytic chl a
(p < 0.001), benthic chl a (p = 0.008) and total FA abun-
dance (p = 0.005), but increased bacterial FAs (%BrFA,
p = 0.015; %10Me17:0, p = 0.001) (Figs. 1 & 2, see
Fig. 4).

Nutrient concentrations

During the first week of the experiment, nutrient
treatments received 200 g of Osmocote™, which
increased the concentration of (NO2

– + NO3
–) (p <

0.001), but not of NH4
+ or PO4

–3. For the remainder of

the experiment, Osmocote™ additions were increased
to 400 g, thereby raising the concentrations of (NO2

– +
NO3

–), NH4
+ and PO4 (all p < 0.001; Table 1).

59

Z
os

te
ra

 m
ar

in
a

(A
F

D
M

, 
g

) 

0

2

4
No nutrients

Nutrients

E
p

ip
h
yt

ic
 c

h
l 
a 

(μ
g

 c
m

–
2
 b

la
d

e
) 

0

1

2

3

B
e
n
th

ic
 c

h
l 
a 

(μ
g

 c
m

–
2
) 

0

1

2

N

P

G

(A)

(B)

(C)

N
o 

ca
ge

 c
on

tr
ol

C
ag

e 
co

nt
ro

l
G

ra
ze

r
P
re

d
at

or

G
+
P

Fig. 1. Effects of nutrient enrichment, predators and grazers
on (A) Zostera marina, (B) epiphytic chl a and (C) benthic chl
a. The presence of cages reduced the abundance of all 3
primary producers. Nutrient enrichment and predators
reduced Z. marina abundance while grazers reduced epi-
phytic chl a. Statistical results in Table 2. Error bars: SE; sig-
nificant treatment effects: N = nutrient enrichment, P = crab 

predators, G = grazers
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Fig. 2. Predators and grazers affected abundances of (A) or-
ganic carbon (%TOC), (B) total nitrogen (%TN) and (C) total
fatty acids (FAs) in the sediment. Predators decreased %TOC
and total FAs while grazers increased %TN. Nutrient enrich-
ment did not affect %TOC, %TN or total FAs. Symbols and 

statistical analysis are as described in Fig. 1

Nutrient treatment No nutrient treatment
Nutrients Day 14 Day 23 Day 14 Day 23

NO2
– + NO3

– 5.55 6.31 0.11 0.29
NH4

+ 4.98 8.45 0.69 2.28
PO4

–3 0.27 0.57 0.01 0.09

Table 1. Average concentration (µM) of water column nutri-
ents sampled on Days 14 and 23 of the experiment when
Osmocote™ additions were 400 g per treatment. Concentra-
tions were higher in nutrient versus non-nutrient treatments 

(p < 0.001)
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Primary producers

Zostera marina biomass was decreased by the addi-
tion of nutrients and predators while epiphytes were
reduced by grazers (Fig. 1, Table 2). In contrast, ben-
thic chl a was insensitive to all 3 treatments.

Bulk sediment organic matter (SOM)

Sediment %TOC was decreased by predators while
%TN was increased by grazers (Fig. 2, Table 2). Nei-
ther %TOC nor %TN was influenced by nutrient addi-
tion nor was either variable correlated to the final bio-
mass of any primary producer group (Table 3).

Total fatty acids 

Within caged enclosures, predators decreased total
FA abundance (µg g–1 sediment; Fig. 2C, Table 2),

which was positively, but weakly, correlated to Zostera
marina biomass (Table 3). In addition to total FA abun-
dance, we analyzed FA composition by dividing total
FAs into subclasses based on chain length, degree of
saturation and carbon branching patterns; these
groups represent different OM sources.

Algal and microbial contributions to SOM, repre-
sented by short chain saturated FAs (SCFA; %[C12:0 +
C14:0]), were affected by resource level and food chain
length. %SCFA in treatments with nutrient additions
was lower. Grazers increased %SCFA in the absence
of predators, resulting in a significant interaction
between grazer and predator effects (Fig. 3A, Table 2).

Vascular plant contributions to SOM, represented by
long chain FAs (LCFA; %[C24:0 + C26:0 + C28:0]), were
also influenced by resource availability and food web
composition. Grazers consistently increased %LCFA
(Fig. 3B, Table 2). Nutrient addition increased %LCFA
in the presence of predators, but decreased %LCFA in
the absence of predators, creating a nutrient × predator
interaction effect. Surprisingly, %LCFA correlated

60

Nutrients Predators Grazers Interactions Error
MS p ω2 MS p ω2 MS p ω2 MS p ω2 MS ω2

Zostera marina (AFDM) 3.76 0.001 0.21 1.79 0.017 0.09 0.68 0.128 0.02 0.27 0.65
ln epiphytic chl a 0.10 0.468 0.00 0.48 0.119 0.02 5.93 <0.001 0.43 0.18 0.55
Benthic chl a 0.06 0.380 0.00 0.17 0.152 0.03 0.00 0.987 0.00 0.08 1.08
%TOC 0.00 0.875 0.00 0.11 0.032 0.10 0.05 0.152 0.03 0.02 0.94
%TN 0.00 0.628 0.00 0.00 0.279 0.01 0.00 0.022 0.12 0.00 0.95
Total FAs (µg g–1) 1.62 0.898 0.00 664.03 0.014 0.14 12.91 0.717 0.00 96.10 0.92
%SCFAa 1.81 0.014 0.11 1.52 0.024 0.09 1.45 0.026 0.08 G × P 2.38 0.006 0.15 0.26 0.72
%C16:0 0.03 0.909 0.00 0.74 0.569 0.00 20.81 0.005 0.17 2.22 0.80
%C18:0 1.07 0.164 0.03 2.45 0.040 0.09 0.42 0.380 0.00 0.52 0.96
%LCFAb 1.00 0.454 0.00 3.33 0.177 0.02 14.04 0.009 0.13 N × P 9.76 0.025 0.09 1.72 0.75
%NNT 12.78 0.014 0.20 12.32 0.015 0.19 1.58 0.56
%NT 0.81 0.523 0.00 3.33 0.207 0.04 1.87 1.02
%(C18:2 + C18:3) 0.01 0.901 0.00 0.04 0.738 0.00 0.49 0.267 0.01 0.68 1.04
%C20 PUFAc 0.22 0.713 0.00 0.77 0.494 0.00 10.58 0.017 0.09 N × P 22.14 0.001 0.21 1.60 0.64

G × P 11.81 0.012 0.10
%NNT 16.27 0.002 0.31 4.70 0.064 0.07 G × P 8.02 0.020 0.14 1.15 0.47
%NT 7.03 0.092 0.09 5.89 0.120 0.07 2.10 0.80
%C22 PUFAd 0.00 0.970 0.00 2.88 0.010 0.14 0.14 0.542 0.00 G × P 1.90 0.032 0.08 0.37 0.81
%(C16:1ω7) 3.92 0.608 0.00 0.51 0.852 0.00 126.60 0.007 0.18 14.50 0.91
C16:1ω7:C16:0 0.02 0.526 0.00 0.01 0.756 0.00 0.65 0.002 0.23 0.05 0.85
C20:5ω3:C22:6ω3 4.41 0.291 0.00 96.83 <0.001 0.26 78.98 <0.001 0.21 G × P 43.23 0.002 0.11 3.78 0.42
%BrFAe 1.23 0.325 0.00 5.63 0.042 0.09 1.11 0.350 0.00 1.22 0.97
%10Me17:0 0.31 0.007 0.17 0.30 0.008 0.16 0.01 0.698 0.00 0.04 0.90
a%SCFA represents %(C12:0 + C14:0)
b%LCFA represents %(C24:0 + C26:0 + C28:0)
c%C20 PUFA represents %(C20:4 + C20:5)
d%C22 PUFA represents (C22:5 + C22:6)
e%BrFA (Σ iso-, anteiso-C13:0, C15:0, C17:0, C19:0)

Table 2. Tests of significance and estimated magnitudes of effect (ω2) for nutrient level, predator presence, grazer presence and
their interactions on plant biomass, sediment total nitrogen, sediment organic carbon and sediment fatty acid abundance. Except
where noted, analyses were performed on untransformed data. When an interaction between nutrients and predators or grazers
was significant, the data set was divided according to the interaction (i.e. nutrients, NT, versus no nutrients, NNT), and an
ANOVA was performed again. For interactive effects: G = grazers, P = predators, N = nutrients. Bold: significant relationships 

(p < 0.05) 
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positively with benthic chl a and negatively with epi-
phytic chl a, and was not related to Zostera marina
(Table 3). Since benthic chl a explained 17% of the
variance it was probably a minor contributor to LCFA
abundance.%LCFA was positively, but weakly, corre-
lated with abundances of 2 grazer species, the amphi-
pod Gammarus mucronatus and the isopod Erich-
sonella attenuata, (p = 0.004, r2 = 0.21 and p = 0.031,
r2 = 0.11, respectively; data not shown).

The relative abundance of FAs deriving from labile
algal sources, represented by polyunsaturated FAs
(PUFA), was also affected by nutrient and food web
manipulations (Fig. 3C,D, Table 2). We analyzed 2
groups of PUFA since they represent different types of
algae; diatoms are a source of C20:4 and C20:5 while
dinoflagellates are rich in C22:5 and C22:6. Hereafter
(C20:4 + C20:5) will be referred to as C20 PUFA and (C22:5

+ C22:6) as C22 PUFA. Grazers decreased %C20 PUFA
but the grazing effect was eliminated in the presence
of predators, resulting in a grazer by predator interac-
tion. Predators only increased %C20 PUFA in treat-
ments without nutrient additions, creating a predator
by nutrient interaction. %C20 PUFA was correlated
negatively with benthic chl a and positively with
epiphytic chl a; both correlations explained a small
proportion of the variance in %C20 PUFA (Table 3).
Biomasses of the grazers Gammarus mucronatus and
Erichsonella attenuata were negatively and weakly
correlated with %C20 PUFA (p = 0.008, r2 = 0.18 and p =
0.012, r2 = 0.16, respectively; data not shown). Preda-

tors decreased %C22 PUFA in the absence of grazers,
resulting in a grazer × predator interaction.

In addition to PUFA, we used 2 ratios (C16:1ω7:C16:0

and C20:5ω3:C22:6ω3) to determine the relative contribu-
tions of diatoms to sediment FA composition (Viso &
Marty 1993, Budge & Parrish 1998, Shin et al. 2000).
Grazers decreased both ratios and, hence, the abun-
dance of diatom-derived FAs relative to contributions
from other microalgae (Fig. 3E,F, Table 2). Predators
increased diatom:dinoflagellate FAs (C20:5ω3:C22:6ω3),
but the magnitude was weaker in the presence of graz-
ers and resulted in a grazer × predator interaction. Epi-
phytic chl a was positively correlated to both ratios
while benthic chl a was negatively correlated to
C20:5ω3:C22:6ω3 (Table 3). However, these correlations
explained a small portion of the variance in C16:1ω7:C16:0

and C20:5ω3:C22:6ω3. Biomass of the grazing isopod
Idotea balthica was positively, but weakly, related to
C20:5ω3:C22:6ω3 (p = 0.019, r2 = 0.12; data not shown).
Combined, these data suggest that epiphytes were a
source of diatom FAs in the sediments and that above-
ground animal activities altered SOM supply and com-
position.

To examine how changes in SOM composition in-
fluenced the sediment bacterial community, we ana-
lyzed FAs representative of sediment bacterial OM
(10Me17:0, and iso- and anteiso-C 13:0, C15:0, C17:0, C19:0;
Fig. 4). Predators increased the relative abundance of
branched odd numbered FAs (%BrFA; iso- and
anteiso-C13:0, C15:0, C17:0, C19:0), representing sediment
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Zostera marina Benthic chl a Epiphytic chl a Total
Coefficient Partial r2 p Coefficient Partial r2 p Coefficient Partial r2 p model r2

%TOC 0.07 0.08 0.128 0.04 0.00 0.720 0.01 0.00 0.810 0.08
%TN 0.01 0.09 0.106 –0.01 0.01 0.691 0.00 0.01 0.515 0.11
Total FAs (µg g–1) 6.09 0.15 0.027 –1.02 0.00 0.886 4.34 0.06 0.145 0.21
%SCFAa 0.23 0.05 0.209 0.29 0.01 0.552 –0.37 0.10 0.072 0.15
%C16:0 0.40 0.02 0.376 –0.18 0.00 0.879 –0.96 0.11 0.060 0.13
%C18:0 0.37 0.09 0.092 0.18 0.00 0.750 0.01 0.00 0.962 0.10
%LCFAb 0.29 0.01 0.444 2.81 0.17 0.010 –1.18 0.18 0.009 0.36
%C20 PUFAc –0.29 0.01 0.486 –2.59 0.13 0.027 1.18 0.16 0.015 0.31
%C22 PUFAd 0.26 0.06 0.173 –0.18 0.00 0.726 0.14 0.02 0.495 0.08
%(C16:1ω7) –0.43 0.00 0.669 –3.32 0.04 0.225 3.38 0.24 0.005 0.28
C16:1ω7:C16:0 –0.05 0.02 0.385 –0.15 0.02 0.383 0.22 0.24 0.004 0.28
C20:5ω3:C22:6ω3 –0.44 0.01 0.600 –5.24 0.14 0.025 2.05 0.13 0.032 0.28
%BrFAe –0.84 0.23 0.003 1.06 0.05 0.129 –0.96 0.25 0.002 0.53
%10Me17:0 –0.22 0.40 <0.001 0.28 0.08 0.048 –0.11 0.07 0.063 0.56
a%SCFA represents %(C12:0 + C14:0)
b%LCFA represents %(C24:0 + C26:0 + C28:0)
c%C20 PUFA represents %(C20:4 + C20:5)
d%C22 PUFA represents (C22:5 + C22:6)
e%BrFA (Σ iso-, anteiso-C13:0, C15:0, C17:0, C19:0)

Table 3. Regression analyses of Zostera marina (ash-free dry mass, g), benthic chl a (µg cm–2) and epiphytic chl a (µg cm–2 blade
area) against bulk SOM and the FA groups (expressed as % of total FAs). Partial r2 values were calculated by dividing the 

type III SS by the total SS. Signifcant relationships (p < 0.05) are in bold text
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heterotrophic bacteria (Fig. 4A, Table 2). Correlations
between %BrFA and Zostera marina biomass and epi-
phytic chl a were negative and weak (Table 3). Nutri-
ent addition and predators increased %10Me17:0 (Fig.
4B, Table 2), a FA abundant in sulfate-reducing bacte-
ria, which was correlated negatively to Z. marina and
positively to benthic chl a (Table 3). These data sug-
gest that food web structure, particularly predator
presence, and resource levels influenced the sediment
heterotrophic bacterial and microbial community.

Using PCA, we evaluated the effects of nutrient
addition, grazers and predators on primary producer
abundance, bulk SOM and FA groups. Principal com-
ponents 1 (PC1) and 2 (PC2) explained 26.0 and
21.8%, respectively, of the variance in the data. PC1
tended to separate treatments according to grazer
effect; variables increased by grazers (%TN, %SCFA,

%LCFA and %C16:0) had positive loadings while those
decreased by grazers (epiphytic chl a, %C20 PUFA and
%C16:1ˆ7) had negative loadings (Fig. 5A). PC1 was cor-
related negatively to epiphytic chl a and positively to
Zostera marina (Table 4). PC2 tended to separate vari-
ables according to predator effect; Z. marina biomass,
%TOC, total FA and %C22 PUFA were decreased by
predators and had negative PC2 loadings while
%BrFA and %10Me17:0 were increased by predators
and had positive PC2 loadings (Fig. 5A). PC2 was neg-
atively correlated to Z. marina biomass and epiphytic
chl a (Table 4). Similar to PC loading results, PC scores
separated treatments according to grazer and predator
presence (Fig. 5B). Treatments with grazers were gen-
erally positive on PC1 while those with predators had
negative scores. Along PC2, caged control treatments
had negative scores while grazer and predator treat-
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ments were more positive. The combined grazer and
predator treatment was near zero on PC1 and PC2 in
the absence of nutrient addition and positive on PC2 in
the presence of nutrient addition. Since the scores of
the grazer and predator treatment and the predator-
only treatment were similar in treatments with nutrient
additions, it is likely that under eutrophic conditions
predators were stronger determinants of SOM compo-
sition than were grazers. Combined, our PCA results
suggest that food web composition strongly influences
FA contributions from primary producers and that
nutrient additions tended to shift the composition of
the primary producer community towards a dominance
of epiphytes and a loss of Z. marina.

DISCUSSION

Our results show that both nutrient enrichment and
food web composition can have dramatic effects on the
quality of organic matter (OM) deposited to estuarine
sediments. Nutrient enrichment created an early
increase in epiphytic algae (Douglass et al. 2007) that

was not evident by the end of the experiment after
grazer populations had increased substantially
(Fig. 1B, Table 2). As such, there was no resultant
increase in algal-derived FAs in nutrient enriched
treatments (i.e. %SCFA, %C20 PUFA, %C22 PUFA). Al-
though grazers reduced epiphytic algae and, poten-
tially, resource competition between primary produc-
ers, this did not result in higher eelgrass or benthic
algal abundances. Instead, grazing on epiphytic algae
probably reduced relative abundances of algal-
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derived SOM (%C20 PUFA, C16:1ω7:C16:0, C20:5ω3:C22:6ω3).
Predators also affected the relative contributions of FA
subclasses to sediments, but these effects were often
moderated by the grazer community, suggesting that
trophic interactions are important mediators of SOM
composition. Surprisingly, presence of grazers was a
stronger determinant of SOM composition and quality
than resource levels (nutrient additions) or predator
presence. Perhaps most importantly, our results indi-
cate that changes in food web composition and
resource availability can have strong effects on SOM
composition over a short time period in a natural sea-
grass bed subject to the numerous other influences
operating in the field.

Nutrient enrichment and SOM composition

Contrary to our initial hypotheses, nutrient enrich-
ment did not increase epiphytic biomass by the end of
the experiment (Douglass et al. 2007). It is likely that
rapid grazer population growth coupled with efficient
grazer consumption of aboveground algae prevented
the accumulation of epiphytes on eelgrass blades (Jer-
nakoff & Nielsen 1997, Heck et al. 2000, Hughes et al.
2004, Heck & Valentine 2006, Valentine & Duffy 2006)
(Fig. 1B, Table 2). The absence of a positive effect of
nutrient enrichment on epiphytic and benthic algae
was mirrored by a general lack of main nutrient effects
on SOM composition. However, interactions between
nutrient enrichment and predator presence suggest
that top-down and bottom-up controls moderate SOM
composition jointly (Fig. 3B,C). Despite a general
insensitivity of SOM composition to nutrient enrich-
ment, nutrient additions resulted in higher relative
abundances of 10Me17:0, a FA common in sulfate-
reducing bacteria. However, nutrient additions did not
elicit similar responses on BrFA, an additional class of
biomarkers for heterotrophic bacteria. The contrast
between these 2 results suggests that BrFA and
10Me17:0 may reflect different bacterial communities.
For instance, %BrFA was negatively related to epi-
phytic chl a while %10Me17:0 correlated positively
with benthic chl a (Table 3). This suggests that bacteria
represented by BrFA responded to early epiphytic OM

deposition, which gradually decreased as grazer popu-
lations grew. As benthic chl a became a proportion-
ately greater source of labile SOM, sulfate-reducing
bacterial metabolism and production of 10Me17:0
probably increased. Higher rates of heterotrophic bac-
terial activity may have reduced sediment oxygen
availability and increased sulfide production, creating
conditions that can be toxic to seagrass (Hemminga
1998, Calleja et al. 2007, Perez et al. 2007). This is sup-
ported by the negative correlations between Zostera
marina and both bacterial FA groups (Table 3). Conse-
quently, nutrient addition may have indirectly affected
seagrass survival by altering SOM composition, het-
erotrophic bacterial activity and, thus, sediment redox
conditions.

Aboveground community structure and 
SOM composition

Surprisingly, Zostera marina biomass was strongly
reduced by predator presence. Unnatural confinement
of predators may have contributed to Z. marina decline
through crab destruction of the grass blades (Douglass
et al. 2007). Loss of Z. marina corresponded with lower
%TOC and total FA abundance, possibly due to lower
effectiveness of the grass in trapping fine sediment and
particulate OM (Bouillon et al. 2004, de Boer 2007)
(Figs. 1 & 2, Table 2). This is consistent with the posi-
tive correlation between Z. marina and total FA abun-
dances (Table 3). Predators influenced SOM composi-
tion by decreasing labile OM from algal and microbial
sources (%SCFA and %C22 PUFA) and %LCFA (ambi-
ent nutrients only; Fig. 3, Table 2). This was opposite to
previous experimental findings where blue crabs
reduced grazers and increased algal biomass and algal
FAs in the sediment (Duffy et al. 2005, Canuel et al.
2007). Despite the negative effect of predators on sev-
eral primary producer FA groups, predators increased
diatom-derived FAs (e.g. higher ratio of C20:5ω3:C22:6ω3;
Fig. 3, Table 2) and, perhaps as a result, sediment
heterotrophic bacterial FAs (%BrFA and %10Me17:0;
Fig. 4, Table 2). The positive predator effect on %BrFA
is consistent with previous seagrass mesocosm experi-
ments (Canuel et al. 2007, Spivak et al. 2007) and sug-
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Principal Zostera marina Benthic chl a Epiphytic chl a Total
component Coefficient Partial r2 p Coefficient Partial r2 p Coefficient Partial r2 p Model r2

PC1 1.30 0.17 0.004 1.38 0.03 0.225 –1.49 0.19 0.003 0.39
PC2 –1.65 0.34 <0.001 1.67 0.05 0.086 –1.77 0.32 <0.001 0.70

Table 4. Regression analyses of Zostera marina (ash-free dry mass, g), benthic chl a (µg cm–-2) and epiphytic Chl a (µg cm–-2 blade
area) against principal components 1 (PC1) and 2 (PC2). Partial r2 values were calculated by dividing the type III SS by the 

total SS. Bold: significant (p < 0.05)
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gests that the aboveground community’s effects on pri-
mary producers can penetrate to influence sediment
bacteria. Thus, food chain length could have important
indirect effects on sediment bacterial processes such as
OM decomposition and remineralization.

Overall, grazer community effects on SOM composi-
tion tended to be stronger than nutrient enrichment or
predator presence. This was probably due to the
strong negative effect of grazers on epiphytes that
translated into lower relative abundances of algal
derived FAs in the sediment (%C20 PUFA, C20:5ω3:
C22:6ω3, C16:1ω7:C16:0; Fig. 3). It was surprising that the
relative abundances of SCFA and LCFA, representing
algal and microbial OM and vascular plant OM,
respectively, were higher in grazer-only treatments.
However, it is possible that grazer feeding was selec-
tive (Jernakoff & Nielsen 1997, Valentine & Duffy
2006) and that grazers did not consume OM sources of
SCFA and LCFA. Consequently, grazers reduced the
relative contributions of epiphytic FAs to the sediments
but increased the relative contributions from the
microphytobenthos. There was some evidence of crabs
suppressing or inhibiting grazers, thereby creating a
trophic cascade, as diatom derived FAs were propor-
tionately more abundant in combined grazer and
predator treatments than in grazer-only treatments
(Fig. 3C,F). Our field results confirm previous findings
from mesocosm experiments (Canuel et al. 2007, Spi-
vak et al. 2007) that grazers influence SOM quality and
lability and that these effects indirectly influence sedi-
ment bacterial community composition and contribu-
tions from bacterial biomass.

The importance of the aboveground animal commu-
nity in determining primary producer biomass and
SOM content and composition is summarized by the
PCA results (Fig. 5). PC1 scores indicated that Zostera
marina was more abundant in grazer-only treatments
while epiphytes were more abundant in treatments
with predators or without any animals (Table 4). Nutri-
ent enrichment tended to shift all of the treatments
towards more negative PC1 scores, indicating higher
epiphytic biomass. Predators may have exerted
greater influence over SOM composition than did
grazers under elevated nutrient conditions. This was
suggested by similar PCA scores for the predator-only
and the combined grazer and predator treatments. The
data also indicated that the presence of a food web
strongly affected the primary producer community
since PC2 separated treatments according to the pres-
ence or absence of animals. Thus, our results demon-
strate that SOM composition responds relatively
rapidly to changes in the abundance and composition
of primary producers precipitated by shifts in trophic
structure and resource availability. Consequently, epi-
sodic shifts in community composition and resource

levels have the potential to rapidly influence sediment
processes and ecosystem functioning.

Interexperimental comparisons

Previously, we conducted mesocosm experiments to
determine how food web composition and light levels
affected the composition and quality of SOM (Canuel
et al. 2007, Spivak et al. 2007). The value of these
experiments depends, in part, on how accurately the
mesocosm system mimics the natural environment.
There were many similarities between the experi-
ments, but several important differences also existed.
For instance, grazers increased the proportion of ben-
thic algal and microbial SCFA in the sediment in both
the present field experiment and a previous mesocosm
experiment (Canuel et al. 2007). Predators reduced
OM contributions from labile algae (PUFA) in both the
present field experiment and a mesocosm experiment
(Spivak et al. 2007). Predator presence also affected
the sediment bacterial community as we observed
higher proportions of heterotrophic bacterial FAs in
predator treatments across all 3 experiments. In addi-
tion there was evidence that resource levels influenced
SOM composition as shading (Spivak et al. 2007) and
nutrient addition (this study) decreased Zostera marina
biomass and SOM derived from algae and microbes
(SCFA). The general similarities between this and pre-
vious experiments are encouraging and suggest that
conditions in the mesocosms reflected the natural envi-
ronment in important ways.

Differences between the field and mesocosm experi-
ments confirm that both types of experiments intro-
duce artifacts. However, when used in combination,
field and mesocosm experiments provide realistic
insights into trophic interactions and ecosystem pro-
cesses. For example, benthic chl a was reduced by
grazers in both mesocosm experiments (Canuel et al.
2007, Spivak et al. 2007), but not in the field experi-
ment (present study). It is possible that benthic algae
were reduced because grazers attained a much higher
biomass in the mesocosm experiment (Duffy et al.
2005, Canuel et al. 2007) than in the field experiment.
A more likely explanation is that benthic algal produc-
tion was light-limited in the field experiment, where
water was turbid and deeper than in the mesocosms.
Also the field cages in the experiment reduced light
levels by 66%. The negative effect of cages on light
levels may have reduced abundances of Zostera
marina, epiphytes and total FAs. Despite the negative
effect of caging on primary producer biomass, we were
still able to detect the effects of the food web and nutri-
ent manipulations on eelgrass and algal abundances
and their contributions to the sediments. Thus, it is pos-
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sible that differences between treatments would have
been more pronounced if light levels not been re-
duced. Future research efforts that combine field ex-
periment and mesocosm approaches offer the potential
to provide environmentally meaningful insights about
the effects of bottom-up and top-down processes on
aquatic ecosystems.
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